p-group, metabelian, nilpotent (class 2), monomial
Aliases: C23.262C24, C24.229C23, C22.932+ 1+4, C4⋊1D4⋊21C4, C42⋊32(C2×C4), C42⋊5C4⋊8C2, C23.30(C22×C4), (C23×C4).63C22, C23.23D4⋊19C2, (C2×C42).450C22, (C22×C4).490C23, C22.153(C23×C4), (C22×D4).116C22, C2.42(C22.11C24), C2.4(C22.54C24), C2.C42.70C22, (C2×D4)⋊23(C2×C4), (C2×C4⋊1D4).14C2, (C2×C4).238(C22×C4), (C2×C22⋊C4).44C22, SmallGroup(128,1112)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C23.262C24
G = < a,b,c,d,e,f,g | a2=b2=c2=d2=1, e2=d, f2=cb=bc, g2=b, eae-1=gag-1=ab=ba, ac=ca, ad=da, faf-1=abc, bd=db, be=eb, bf=fb, bg=gb, cd=dc, fef-1=ce=ec, cf=fc, cg=gc, de=ed, df=fd, dg=gd, geg-1=bce, fg=gf >
Subgroups: 732 in 324 conjugacy classes, 132 normal (6 characteristic)
C1, C2, C2, C4, C22, C22, C22, C2×C4, C2×C4, D4, C23, C23, C23, C42, C22⋊C4, C22×C4, C22×C4, C2×D4, C2×D4, C24, C2.C42, C2×C42, C2×C22⋊C4, C4⋊1D4, C23×C4, C22×D4, C42⋊5C4, C23.23D4, C2×C4⋊1D4, C23.262C24
Quotients: C1, C2, C4, C22, C2×C4, C23, C22×C4, C24, C23×C4, 2+ 1+4, C22.11C24, C22.54C24, C23.262C24
(1 39)(2 7)(3 37)(4 5)(6 11)(8 9)(10 38)(12 40)(13 17)(14 46)(15 19)(16 48)(18 42)(20 44)(21 35)(22 62)(23 33)(24 64)(25 29)(26 58)(27 31)(28 60)(30 54)(32 56)(34 52)(36 50)(41 45)(43 47)(49 61)(51 63)(53 57)(55 59)
(1 11)(2 12)(3 9)(4 10)(5 38)(6 39)(7 40)(8 37)(13 41)(14 42)(15 43)(16 44)(17 45)(18 46)(19 47)(20 48)(21 49)(22 50)(23 51)(24 52)(25 53)(26 54)(27 55)(28 56)(29 57)(30 58)(31 59)(32 60)(33 63)(34 64)(35 61)(36 62)
(1 51)(2 52)(3 49)(4 50)(5 36)(6 33)(7 34)(8 35)(9 21)(10 22)(11 23)(12 24)(13 25)(14 26)(15 27)(16 28)(17 29)(18 30)(19 31)(20 32)(37 61)(38 62)(39 63)(40 64)(41 53)(42 54)(43 55)(44 56)(45 57)(46 58)(47 59)(48 60)
(1 3)(2 4)(5 7)(6 8)(9 11)(10 12)(13 15)(14 16)(17 19)(18 20)(21 23)(22 24)(25 27)(26 28)(29 31)(30 32)(33 35)(34 36)(37 39)(38 40)(41 43)(42 44)(45 47)(46 48)(49 51)(50 52)(53 55)(54 56)(57 59)(58 60)(61 63)(62 64)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)(49 50 51 52)(53 54 55 56)(57 58 59 60)(61 62 63 64)
(1 31 23 47)(2 20 24 60)(3 29 21 45)(4 18 22 58)(5 26 62 42)(6 15 63 55)(7 28 64 44)(8 13 61 53)(9 57 49 17)(10 46 50 30)(11 59 51 19)(12 48 52 32)(14 38 54 36)(16 40 56 34)(25 37 41 35)(27 39 43 33)
(1 15 11 43)(2 56 12 28)(3 13 9 41)(4 54 10 26)(5 58 38 30)(6 19 39 47)(7 60 40 32)(8 17 37 45)(14 50 42 22)(16 52 44 24)(18 36 46 62)(20 34 48 64)(21 53 49 25)(23 55 51 27)(29 61 57 35)(31 63 59 33)
G:=sub<Sym(64)| (1,39)(2,7)(3,37)(4,5)(6,11)(8,9)(10,38)(12,40)(13,17)(14,46)(15,19)(16,48)(18,42)(20,44)(21,35)(22,62)(23,33)(24,64)(25,29)(26,58)(27,31)(28,60)(30,54)(32,56)(34,52)(36,50)(41,45)(43,47)(49,61)(51,63)(53,57)(55,59), (1,11)(2,12)(3,9)(4,10)(5,38)(6,39)(7,40)(8,37)(13,41)(14,42)(15,43)(16,44)(17,45)(18,46)(19,47)(20,48)(21,49)(22,50)(23,51)(24,52)(25,53)(26,54)(27,55)(28,56)(29,57)(30,58)(31,59)(32,60)(33,63)(34,64)(35,61)(36,62), (1,51)(2,52)(3,49)(4,50)(5,36)(6,33)(7,34)(8,35)(9,21)(10,22)(11,23)(12,24)(13,25)(14,26)(15,27)(16,28)(17,29)(18,30)(19,31)(20,32)(37,61)(38,62)(39,63)(40,64)(41,53)(42,54)(43,55)(44,56)(45,57)(46,58)(47,59)(48,60), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32)(33,35)(34,36)(37,39)(38,40)(41,43)(42,44)(45,47)(46,48)(49,51)(50,52)(53,55)(54,56)(57,59)(58,60)(61,63)(62,64), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,31,23,47)(2,20,24,60)(3,29,21,45)(4,18,22,58)(5,26,62,42)(6,15,63,55)(7,28,64,44)(8,13,61,53)(9,57,49,17)(10,46,50,30)(11,59,51,19)(12,48,52,32)(14,38,54,36)(16,40,56,34)(25,37,41,35)(27,39,43,33), (1,15,11,43)(2,56,12,28)(3,13,9,41)(4,54,10,26)(5,58,38,30)(6,19,39,47)(7,60,40,32)(8,17,37,45)(14,50,42,22)(16,52,44,24)(18,36,46,62)(20,34,48,64)(21,53,49,25)(23,55,51,27)(29,61,57,35)(31,63,59,33)>;
G:=Group( (1,39)(2,7)(3,37)(4,5)(6,11)(8,9)(10,38)(12,40)(13,17)(14,46)(15,19)(16,48)(18,42)(20,44)(21,35)(22,62)(23,33)(24,64)(25,29)(26,58)(27,31)(28,60)(30,54)(32,56)(34,52)(36,50)(41,45)(43,47)(49,61)(51,63)(53,57)(55,59), (1,11)(2,12)(3,9)(4,10)(5,38)(6,39)(7,40)(8,37)(13,41)(14,42)(15,43)(16,44)(17,45)(18,46)(19,47)(20,48)(21,49)(22,50)(23,51)(24,52)(25,53)(26,54)(27,55)(28,56)(29,57)(30,58)(31,59)(32,60)(33,63)(34,64)(35,61)(36,62), (1,51)(2,52)(3,49)(4,50)(5,36)(6,33)(7,34)(8,35)(9,21)(10,22)(11,23)(12,24)(13,25)(14,26)(15,27)(16,28)(17,29)(18,30)(19,31)(20,32)(37,61)(38,62)(39,63)(40,64)(41,53)(42,54)(43,55)(44,56)(45,57)(46,58)(47,59)(48,60), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32)(33,35)(34,36)(37,39)(38,40)(41,43)(42,44)(45,47)(46,48)(49,51)(50,52)(53,55)(54,56)(57,59)(58,60)(61,63)(62,64), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,31,23,47)(2,20,24,60)(3,29,21,45)(4,18,22,58)(5,26,62,42)(6,15,63,55)(7,28,64,44)(8,13,61,53)(9,57,49,17)(10,46,50,30)(11,59,51,19)(12,48,52,32)(14,38,54,36)(16,40,56,34)(25,37,41,35)(27,39,43,33), (1,15,11,43)(2,56,12,28)(3,13,9,41)(4,54,10,26)(5,58,38,30)(6,19,39,47)(7,60,40,32)(8,17,37,45)(14,50,42,22)(16,52,44,24)(18,36,46,62)(20,34,48,64)(21,53,49,25)(23,55,51,27)(29,61,57,35)(31,63,59,33) );
G=PermutationGroup([[(1,39),(2,7),(3,37),(4,5),(6,11),(8,9),(10,38),(12,40),(13,17),(14,46),(15,19),(16,48),(18,42),(20,44),(21,35),(22,62),(23,33),(24,64),(25,29),(26,58),(27,31),(28,60),(30,54),(32,56),(34,52),(36,50),(41,45),(43,47),(49,61),(51,63),(53,57),(55,59)], [(1,11),(2,12),(3,9),(4,10),(5,38),(6,39),(7,40),(8,37),(13,41),(14,42),(15,43),(16,44),(17,45),(18,46),(19,47),(20,48),(21,49),(22,50),(23,51),(24,52),(25,53),(26,54),(27,55),(28,56),(29,57),(30,58),(31,59),(32,60),(33,63),(34,64),(35,61),(36,62)], [(1,51),(2,52),(3,49),(4,50),(5,36),(6,33),(7,34),(8,35),(9,21),(10,22),(11,23),(12,24),(13,25),(14,26),(15,27),(16,28),(17,29),(18,30),(19,31),(20,32),(37,61),(38,62),(39,63),(40,64),(41,53),(42,54),(43,55),(44,56),(45,57),(46,58),(47,59),(48,60)], [(1,3),(2,4),(5,7),(6,8),(9,11),(10,12),(13,15),(14,16),(17,19),(18,20),(21,23),(22,24),(25,27),(26,28),(29,31),(30,32),(33,35),(34,36),(37,39),(38,40),(41,43),(42,44),(45,47),(46,48),(49,51),(50,52),(53,55),(54,56),(57,59),(58,60),(61,63),(62,64)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48),(49,50,51,52),(53,54,55,56),(57,58,59,60),(61,62,63,64)], [(1,31,23,47),(2,20,24,60),(3,29,21,45),(4,18,22,58),(5,26,62,42),(6,15,63,55),(7,28,64,44),(8,13,61,53),(9,57,49,17),(10,46,50,30),(11,59,51,19),(12,48,52,32),(14,38,54,36),(16,40,56,34),(25,37,41,35),(27,39,43,33)], [(1,15,11,43),(2,56,12,28),(3,13,9,41),(4,54,10,26),(5,58,38,30),(6,19,39,47),(7,60,40,32),(8,17,37,45),(14,50,42,22),(16,52,44,24),(18,36,46,62),(20,34,48,64),(21,53,49,25),(23,55,51,27),(29,61,57,35),(31,63,59,33)]])
38 conjugacy classes
class | 1 | 2A | ··· | 2G | 2H | ··· | 2O | 4A | ··· | 4V |
order | 1 | 2 | ··· | 2 | 2 | ··· | 2 | 4 | ··· | 4 |
size | 1 | 1 | ··· | 1 | 4 | ··· | 4 | 4 | ··· | 4 |
38 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 4 |
type | + | + | + | + | + | |
image | C1 | C2 | C2 | C2 | C4 | 2+ 1+4 |
kernel | C23.262C24 | C42⋊5C4 | C23.23D4 | C2×C4⋊1D4 | C4⋊1D4 | C22 |
# reps | 1 | 2 | 12 | 1 | 16 | 6 |
Matrix representation of C23.262C24 ►in GL9(𝔽5)
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 2 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 4 | 1 | 2 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 |
4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 3 | 0 | 3 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 2 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 4 | 4 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 3 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 4 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 2 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 3 | 2 | 4 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 4 | 1 | 2 |
0 | 0 | 0 | 0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 4 | 0 | 1 |
4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 3 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 4 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 3 | 2 | 0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 2 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 4 | 1 | 2 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 |
G:=sub<GL(9,GF(5))| [1,0,0,0,0,0,0,0,0,0,4,4,2,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,4,0,1,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,2,0,0,4],[1,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,4],[4,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1],[2,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,3,4,2,2,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,1,4,0,0,0,0,0,0,0,0,4],[1,0,0,0,0,0,0,0,0,0,1,1,0,3,0,0,0,0,0,3,4,2,2,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,1,4,1,0,0,0,0,0,0,4,0,4,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,2,0,1],[4,0,0,0,0,0,0,0,0,0,1,1,3,0,0,0,0,0,0,3,4,2,2,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,1,0,4,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,2,4] >;
C23.262C24 in GAP, Magma, Sage, TeX
C_2^3._{262}C_2^4
% in TeX
G:=Group("C2^3.262C2^4");
// GroupNames label
G:=SmallGroup(128,1112);
// by ID
G=gap.SmallGroup(128,1112);
# by ID
G:=PCGroup([7,-2,2,2,2,-2,2,2,448,253,758,555,268,1571,346,80]);
// Polycyclic
G:=Group<a,b,c,d,e,f,g|a^2=b^2=c^2=d^2=1,e^2=d,f^2=c*b=b*c,g^2=b,e*a*e^-1=g*a*g^-1=a*b=b*a,a*c=c*a,a*d=d*a,f*a*f^-1=a*b*c,b*d=d*b,b*e=e*b,b*f=f*b,b*g=g*b,c*d=d*c,f*e*f^-1=c*e=e*c,c*f=f*c,c*g=g*c,d*e=e*d,d*f=f*d,d*g=g*d,g*e*g^-1=b*c*e,f*g=g*f>;
// generators/relations